Công thức bất đẳng thức

Bất đẳng thức và các ứng dụng

I. Khái niệm bất đẳng thức cơ bản

1.1 Số thức dương, số thực âm

                 Nếu a là số thực dương, ta kí hiệu a>0

                Nếu a là số thực âm, ta kí hiệu a

                Nếu a là số thực dương hoặc a = 0, ta nói a là số thực không âm, kí hiệu a≥0a≥0

                Nếu a là số thực âm hoặc a = 0, ta nói a là số thực không dương, kí hiệu a≤0a≤0

Chú ý: Với hai số thực a, b chỉ có một trong ba khả năng sau xảy ra:

                              a>b hoặc a

                             Phủ định của mệnh đề a>0 là a≤0a≤0

                             Phủ định của mệnh đề a

bdt 1 bdt 1
bdt 2 bdt 2
bdt 3 bdt 3
bdt 4 bdt 4
bdt 5 bdt 5
bdt 6 bdt 6
bdt 7 bdt 7
bdt 8 bdt 8
bdt 9 bdt 9
bdt 10 bdt 10
bdt 11 bdt 11
bdt 12 bdt 12
bdt 13 bdt 13
bdt 14 bdt 14
bdt 15 bdt 15
bdt 16 bdt 16
bdt 17 bdt 17
bdt 18 bdt 18
bdt 19 bdt 19
bdt 20 bdt 20
bdt 21 bdt 21
bdt 22 bdt 22
bdt 23 bdt 23
bdt 24 bdt 24

Bất đẳng thức có được từ hằng đẳng thức dạng (a−b)2≥0

bdt 25 bdt 25
bdt 26 bdt 26
bdt 27 bdt 27

Bất đẳng thức AM – GM (Sách giáo khoa việt nam gọi là bất đẳng thức Côsi)

bdt 28 bdt 28
bdt 29 bdt 29
bdt 30 bdt 30
bdt 31 bdt 31
bdt 32 bdt 32
bdt 33 bdt 33
bdt 34 bdt 34

Bất đẳng thức Cauchy – Schwarz (Sách giáo khoa việt nam gọi là bất đẳng thức Bunhiacopsky)

bdt 35 bdt 35
bdt 36 bdt 36
bdt 37 bdt 37
bdt 38 bdt 38
bdt 40 bdt 40

Bất đẳng thức Cauchy – Schwarz dạng phân thức

bdt 41 bdt 41
bdt 42 bdt 42
bdt 43 bdt 43

Bất đẳng thức Mincopski (bất đẳng thức véctơ)

bdt 44 bdt 44
bdt 45 bdt 45

Bài 1. Cho các số thực dương a, b, c thỏa mãn a2 + b2 + c2 = 3.

Chứng minh rằng:

bdt 46 bdt 46
bdt 47 bdt 47

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Ôn tập về Bất đẳng thức

1. Khái niệm bất đẳng thức

– Các mệnh đề dạng “ab” được gọi là bất đẳng thức.

2. Bất đẳng thức hệ quả và bất đẳng thức tương đương

– Nếu mệnh đề “a

– Nếu bất đẳng thức a

3. Tính chất của bất đẳng thức

° Cộng hai vế của bất đẳng thức với một số:

 a

° Nhân hai vế của bất đẳng thức với một số:

– Với c>0: a

– Với c bc

° Cộng hai bất đẳng thức cùng chiều

 a

° Nhân hai bất đẳng thức cùng chiều

– Với a>0, c>0: a

° Nâng hai vế của bất đẳng thức lên một lũy thừa

– Với n ∈ N*: a2n+1 2n+1

– Với n ∈ N* và a>0: a2n 2n

° Khai căn hai vế của một bất đẳng thức

bdt 48 bdt 48

2. Các hệ quả của Bất đẳng thứ Cô-si

° Hệ quả 1: Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.

bdt 49 bdt 49

Bất đẳng thức chứa dấu trị tuyệt đối

Từ định nghĩa giá trị tuyệt đối, ta có tính chất bất đẳng thức trị tuyệt đối như sau

° |x| ≥ 0, |x| ≥ x, |x| ≥ -x

° Với a>0:

 |x| ≤ 0 ⇔ -a ≤ x ≤ a

 |x| ≥ a ⇔ x ≤ -a hoặc x ≥ a

° |a| – |b| ≤ |a + b| ≤ |a| + |b|

Bài tập vận dụng Bất đẳng thức

* Bài 1 trang 79 SGK Đại Số 10: Trong các khẳng định sau, khẳng định nào đúng với mọi giá trị của x?

a) 8x > 4x ;        b) 4x > 8x

c) 8x2 > 4x2 ;     d) 8 + x > 4 + x

* Lời giải:

– Đáp án đúng: d) 8 + x > 4 + x

– Vì 8 > 4 nên với mọi x thì 8+ x > 4+ x ( tính chất cộng hai vế của BĐT với 1 số). Nên khẳng định d là đúng với mọi giá trị của x.

+ Các đáp án khác sai vì:

a) Ta có: 8 > 4 nên để 8x > 4x thì x > 0

– Do đó, chỉ đúng khi x > 0 (hay nói cách khác nếu x

b) Ta có: 4 8x thì x

– Do đó, khẳng định chỉ đúng khi x

c) chỉ đúng khi x ≠ 0

Bài 2 trang 79 SGK Đại Số 10: Cho số x > 5, số nào trong các số sau đây là số nhỏ nhất?

A=5/x;  B=5/x + 1;  C = 5/x – 1; D = x/5.

* Lời giải:

– Với mọi x ≠ 0 ta luôn có: – 1

bdt 50 bdt 50

→ Vậy ta có C

* Bài 3 trang 79 SGK Đại Số 10: Cho a, b, c là độ dài ba cạnh của một tam giác.

1) Chứng minh (b – c)2 2

2) Từ đó suy ra: a2 + b2 + c2 

* Lời giải:

1) (b – c)2 2

– Vì a, b, c là độ dài 3 cạnh của một tam giác nên tổng 2 cạnh luôn lớn hơn cạnh còn lại. ⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

– Ta có: (b – c)2 – a2 = (b – c – a)(b – c + a)

 Do b c ⇒ b + a – c > 0.

 Suy ra: (b – c – a)(b – c + a) 2 – a2 2 2

2) Từ kết quả câu 1) ta có

 a2 > (b – c)2 

 b2 > (a – c)2 

 c2 > (a – b)2 

– Cộng vế với vế ba bất đẳng thức trên ta có:

 a2 + b2 + c2 > (b – c)2 + (c – a)2 + (a – b)2 

⇒ a2 + b2 + c> b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2

⇒ a2 + b2 + c> 2(a2 + b2 + c2) – 2(ab + bc + ca)

⇒ a2 + b2 + c2 

Bài 4 trang 79 SGK Đại Số 10: Chứng minh rằng: x3 + y3 ≥ x2y + xy2, ∀x, y ≥ 0

* Lời giải:

Với x ≥ 0; y ≥ 0 thì x + y ≥ 0

Ta có: x3 + y3 ≥ x2y + xy2

⇔ (x3 + y3) – (x2y + xy2) ≥ 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) ≥ 0

⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)

Dấu “=” xảy ra khi (x – y)2 = 0 ⇔ x = y.

* Bài 5 trang 79 SGK Đại Số 10: Chứng minh rằng: 

bdt 51 bdt 51
bdt 52 bdt 52

+ Xét 0 ≤ t 3 3 > 0 ; 1 – t > 0

 t8 – t5 + t2 – t + 1 = t8 + (t2 – t5) + (1 – t) = t8 + t2.(1 – t3) + (1 – t) > 0 + 0 + 0 = 0

(vì t8 ≥ 0; t2 ≥ 0 ⇒ t2(1 – t3) ≥ 0)

+ Xét t ≥ 1 ⇒ t3 ≥ 1 ⇒ t3 – 1 ≥ 0 và t – 1 ≥ 0.

 t8 – t5 + t2 – t + 1 = t5.(t3 – 1) + t.(t – 1) + 1 ≥ 0 + 0 + 1 > 0

Vậy với mọi t ≥ 0 thì t8 – t5 + t2 – t + 1 ≥ 1/2 > 0 hay

bdt 53 bdt 53

Bài 6 trang 79 SGK Đại Số 10: Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.

bdt 54 bdt 54

Lời giải:

– Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.

Áp dụng bất đẳng thức Cô-si ta có:

MA + MB ≥ 2√MA.MB = 2. √1 = 2

Dấu « = » xảy ra khi MA = MB = 1.

Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.

Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)

Vậy tọa độ là A(√2, 0) và B(0, √2).

Bản quyền bài viết thuộc trường Trường THPT Phạm Hồng Thái. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: Trường THPT Phạm Hồng Thái (thpt-phamhongthai.edu.vn)

Related Posts

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *